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Method to account for arbitrary strains in kinetic Monte Carlo simulations
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We present a method for efficiently recomputing rates in a kinetic Monte Carlo simulation when the existing
rate catalog is modified by the presence of a strain field. We use the concept of the dipole tensor to estimate the
changes in the kinetic barriers that comprise the catalog, thereby obviating the need for recomputing them from
scratch. The underlying assumptions in the method are that linear elasticity is valid, and that the topology of
the underlying potential energy surface (and consequently, the fundamental structure of the rate catalog) is not
changed by the strain field. As a simple test case, we apply the method to a single vacancy in zirconium diffusing
in the strain field of a dislocation, and discuss the consequences of the assumptions on simulating more complex
materials.
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I. INTRODUCTION

The kinetic Monte Carlo (kMC) method1,2 is a widely used
technique to simulate the long time evolution of many systems
of practical interest. It has been used to study a variety of
phenomena such as surface and bulk diffusion,3,4 microbial
ecologies,5 cascade annealing,6,7 and thin film growth.8,9 A
number of enhancements over the last few decades have
resulted in improved methods such as absorbing Markov
chains,10 adaptive kMC,11 object kMC,12 and accelerated
superbasin kMC.13 In the kMC method, a system is advanced
from one minimum energy configuration to the next by
knowing, or computing on the fly, the different escape
pathways from a minimum, and the escape rates for each of
those pathways (the list of escape pathways and associated
escape rates is commonly referred to as a rate catalog). The
escape rates, in turn, are usually given within the purview of
transition state theory (TST), and are a function of the system
temperature, energy barrier, and a rate prefactor that is often
computed using Vineyard’s expression14 for harmonic TST
rates, or simply assumed to be a standard value, typically
about 1012 s−1.

In many applications, one is particularly interested in
how a system of atoms evolves in the presence of strain,
which can dramatically alter the atomic scale events and
overall system evolution. For example, in thin film growth,
lattice mismatches lead to strains and eventually different film
morphologies.15 The effect of externally applied strain has
also been shown to enhance the rate of material dissolution
and the formation of etch pits,16 modify the diffusion rate
of impurities in nanowires,17 and qualitatively change the
behavior of both atom detachment from a step, and dimer
dissociation of Ag on an Ag(100) surface.18 Another source
of strain that is commonly discounted in kMC simulations is
thermal expansion: the rate catalog is often based on defect
properties calculated in a constant volume ensemble, using
the lattice parameter computed at T = 0 K.19,20 This type
of calculation does not account for the thermal eigenstrain,
which depending on the coefficient of thermal expansion of
the material, can significantly change the rate catalog. Internal
strains can also have an important influence on the phenomena
of irradiation creep and irradiation growth21 where the unit

process dictating the macroscopic strain rate of the material
is the absorption of point defects and defect clusters by sinks
such as dislocations and grain boundaries. Different types of
sinks produce inherently different strain fields, modify point
defect mobility in their vicinity, and consequently absorb
point defects at different rates, ultimately leading to modified
macroscopic strain rates.

The strain-induced change in the rate catalog is automati-
cally accounted for in an on-the-fly kMC, but recomputing the
rate catalog at every step can be computationally expensive:
even the most efficient implementation must perform a finite
number of force evaluations, dramatically increasing the
computational cost when compared with a conventional kMC
simulation. Other more approximate methods of accounting
for this strain-induced change include explicitly precomputing
the rate catalog as a function of strain,22–25 using artificial
neural networks to account for long range interactions,26 or
using system specific methods of estimating the energy barrier
change as a function of strain.27,28

In this paper, a method to efficiently account for arbitrary
strain fields in kMC simulations is presented. This method
is not designed to explore the potential energy landscape of
a system (which itself can be a formidable challenge and
is an issue for all kMC simulations), but to incorporate the
effects of strain into an existing kMC rate catalog. In this
method, the strain-induced changes to the energy barriers are
computed using the double dot product (or scalar product) of
the dipole tensor with the strain tensor. The strain-induced
changes to the prefactors may be ignored, because for point
defects and defect clusters, the change in energy barriers has
the most significant effect on the net transition rate (except
at very high temperatures), and the changes in the prefactors
themselves are small (e.g., Matsunaka and Shibutani25 found
≈6% change in the prefactors for a 2% strain). The range of
applicability and limitations of the method are also discussed.
As an example system, the mobility of a single vacancy
in α zirconium is examined. The interatomic potential used
is the third embedded atom method (EAM) potential by
Mendelev and Ackland.29 Preliminary results obtained on
single self-interstitial atoms (SIAs) are also presented. For
all simulations, the x, y, and z axes of the simulation cell were
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aligned along the [21̄1̄0], [011̄0], and [0001] crystallographic
directions, respectively.

II. METHODS

A. Discovering and characterizing transitions

The initial (or reference) configuration of a vacancy was
created by removing a single atom from a perfect crystal and
performing an energy minimization. The different types of
transitions that the vacancy could undergo were determined
by running molecular dynamics (MD) at a temperature of
1100 K from the reference configuration. During the MD run,
the “hot” configuration was periodically quenched. If any atom
had moved more than 1 Å from the reference configuration, a
transition was said to have occurred. If there was no transition,
the MD was simply continued. If a transition had occurred,
it was characterized, the reference configuration restored, and
the MD started anew. All transitions were characterized by
recording the displacement vector dr associated with them, and
obtaining the energy and structure of the saddle point using the
climbing image nudged elastic band (CI-NEB)30–32 method.
In the case of the single vacancy, the only transitions that
were relevant were the in-plane and out-of-plane transitions,
as expected. However, for a more complex defect for which
the transitions cannot be easily guessed, this basin constrained
MD procedure can be important.

B. Dipole tensor computation

As mentioned above, the energetics of different minima and
the transitions between them are affected by strain fields. The
change in energy of a minimum, or a saddle point associated
with a transition, due to a strain ε is given to first order by33–35

�E = −Gijεij , (1)

where G is a second-order tensor called the dipole tensor,
and the Einstein summation convention has been used. It
must be stressed that in this definition, the value of �E

is the change in energy of the defect alone, and does not
include contributions from bulk elastic strain energy. Thus,
in the procedure outlined below, the elastic contribution is
subtracted out. In other words, the value of �E is computed
as the difference in formation energies between strained
and unstrained environments. Three methods of computing
the dipole tensor are available in the literature, namely, the
stress measurement technique,36 the Kanzaki-Hardy forces
method37,38 and Gillan’s strain derivative relation.39,40 The
third method is used in this paper because (a) it has been shown
to be the more accurate of the two,39 and (b) it is applicable
to complex defects (such as interstitial clusters), where the
Kanzaki-Hardy forces method might not be easily applied due
to the difficulty in unambiguously deciding which atoms are
part of the defect, and which atoms are part of the environment.
In Gillan’s strain derivative relation, the derivative of �E with
respect to each component of strain is extracted numerically
from Eq. (1). The procedure adopted is as follows:

In order to compute the ij th component of the dipole tensor
of a minimum structure (in the present test case, a vacancy), the
starting point was a relaxed (minimum energy) configuration.
The simulation box was first subjected to a small, far field

strain component �εij > 0, with all other strain components
set to zero. The boundary atoms were held fixed while the rest
of the structure was relaxed. The change in energy between the
two relaxed structures was measured, and denoted as �(�E)+.

In order to compute the ij th component of the dipole tensor
of the saddle point, the chain of states from the NEB calculation
was taken to be the starting point. All images on the chain were
subjected to a small, far field strain component �εij > 0. The
boundary atoms of all images on the chain were held fixed,
and the NEB procedure was repeated to obtain a new saddle
corresponding to the strained chain of states. The change
in energy between the strained and unstrained saddles was
measured, and denoted as �(�E)+.

For both the minimum and the saddle point, the energy
change measurement was repeated with a strain −�εij , and the
change in energy obtained in this case is denoted as �(�E)−.
The value of Gij , for both the minimum and the saddle point,
is then given as

Gij = −�(�E)+ − �(�E)−

2�εij

. (2)

The procedure was repeated for all ij components of the dipole
tensor, with a value of �εij = 10−4. Note that this method of
computing G assumes that the change in energy is linear with
strain. It is conceivable that higher order terms might need to
be included in Eq. (1), depending of the type of the defect, and
particularly in high strain situations.

C. Incorporating the effects of strain in an object kMC

The list of minima, transitions associated with each
minimum, and displacement vectors dr associated with each
transition form the basic kMC catalog (in the present example
case there is only one minimum, namely a single vacancy),
while the full kMC catalog includes all possible degeneracies
of the minimum due to crystal symmetry, and accounts for
symmetry transformations of the various displacement vectors
dr and dipole tensors G. This full rate catalog was then used in
an object kMC simulation12 where multiple objects, each with
their own rate catalog, are present in the simulation. Given this
rate catalog, the rest of the kMC simulation proceeds much
as in standard kMC,2 but with important differences in the
calculation of energy barriers. For clarity, the entire procedure
is outlined below:

(1) Let the total number of objects be denoted by Nobjects, the
number of possible transitions associated with the ith object
be denoted by N

(i)
transitions, and the total number of possible

transitions over all objects be denoted by N , which is given by
N = ∑

i N
(i)
transitions.

(2) Initialize: The objects (in the present example case, all
objects are vacancies) are placed in their initial minimum, and
position R(i) = R(i)

0 , where the superscript i refers to the object
number.

(3) Begin loop over all objects i ∈ [1,Nobjects].
(4) Begin loop over all transitions j ∈ [1,N

(i)
transitions] that are

associated with object i.
(5) Recalculate energy barrier: Given a strain field ε(R)

(either analytically or in the form of a table), the energy barrier
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is recomputed as

E(i,j )
a = (E + �E)(i,j )

saddle − (E + �E)(i)
minimum, (3)

where E refers to the unstrained energy, and the values
of �E are given by Eq. (1). The subscripts saddle and
minimum refer to quantities pertaining to the saddle point
for that transition, and the minimum energy configuration of
the object, respectively. For the minimum, strain is evaluated
at the position of the defect as ε(R(i)). For the saddle,
strain is evaluated at the halfway point of the transition as
ε(R(i) + 0.5 × dr(i,j )) (note that in general, the saddle point
need not be at the midpoint of the transition).

(6) Recalculate rate: Having recomputed the energy barriers
for each transition, the rate is recalculated as

k(i,j ) = k
(i,j )
0 exp

(
−E

(i,j )
a

kBT

)
, (4)

where k
(i,j )
0 is the prefactor computed from Vineyard’s

expression.14 The strain-induced change in the prefactor has
been ignored, because we expect that a change in k

(i,j )
0 to have

relatively little effect on k(i,j ) when compared with the change
in E

(i,j )
a , except at high temperatures.

(7) Create a one-to-one mapping between every pair of
indices (i,j ), and a single index m.

(8) End loops over j and i.
(9) Recompute the partial sums over every transition m ∈

[1,N ] as

K (m) =
n=m∑
n=1

k(n). (5)

(10) Generate a uniformly distributed random number u ∈
(0,1), and choose the transition m for which K (m−1) <

uK (N) � K (m).
(11) Advance the simulation clock by a time

�t = 1

K (N)
ln

(
1

v

)
, (6)

where v is another uniformly distributed random number v ∈
(0,1).
(12) Displace the chosen object by the displacement vector

associated with the chosen transition, and place it in its new
position R(i)(t + �t) = R(i)(t) + dr(i,j ).
(13) Go back to step 3 and repeat.

Note that in the procedure described above, the effect of
strain is not applied to the displacement vector dr during the
kMC run. This ensures that for any transition, the saddle point
energy is the same in both the forward and backward directions,
thereby satisfying detailed balance. As a consequence, the
spatial trajectory of an object as obtained from the kMC
simulations does not contain the effect of strain, and in
order to obtain the actual trajectory of the object, the strain
field should be applied a posteriori, a procedure that can
be important in computing quantities such as diffusivity.
However, the time scale between events does indeed account
for strain, and any temporal measure of the trajectory is
accurate.

Certain steps in the procedure outlined above can be
eliminated if deemed unnecessary, e.g., if an object is not
moved in a kMC step, and the strain tensor for the ob-
ject and its transitions are unchanged, there is no need to
recompute its rate catalog. Furthermore, reactions between
objects can be defined, as done by Domain et al.,12 and
the strain field produced by the objects themselves can
be incorporated into the simulation. These complexities are
beyond the scope of this paper, and will be addressed in future
publications.

III. RESULTS AND DISCUSSION

A. Comparison of measured and predicted energies

The single vacancy was observed to be capable of two types
of migration events: one out of the basal plane and another in
the basal plane. Out-of-plane migration was a simple vacancy
hop, with a barrier of 0.723 eV. In-plane migration was slightly
more complex: a vacancy executing an in-plane hop was seen
to exhibit a second type of structure in between the hop, which
we will call a split vacancy. As shown in Appendix A, the split
vacancy minimum can be ignored as it is very shallow (depth of
0.01 eV), and the majority of transitions from a normal vacancy
to a split vacancy, as observed in MD simulations, continue
forward to move the vacancy to the next lattice site (i.e., the
transmission coefficient is close to unity). Furthermore, the
lifetime of the split vacancy is negligibly small. Consequently,
the in-plane migration of a vacancy, through the split vacancy
structure, was considered to be a single transition with a barrier
of 0.654 eV. Thus, for the purposes of this study, a vacancy
was considered to have only one type of structure, and two
types of transitions out of this structure. The dipole tensor

TABLE I. List of dipole tensor values G for the minimum energy configuration of the vacancy, and the saddle points for the two basic
transitions discussed in the text. Also given are the displacement values associated with each transition. This table does not include degeneracies
due to crystal symmetry. Distances are in Å, while energy and Gij values are in eV. The x, y, and z axes of the simulation cell were aligned
along the [21̄1̄0], [011̄0], and [0001] crystallographic directions, respectively.

G11 G22 G33 G23 G13 G12

Vacancy minimum (V) − 5.20 − 5.20 − 5.81 0.00 0.00 0.00

Energy Displacement G11 G22 G33 G23 G13 G12

barrier dx dy dz

Out-of-plane transition 0.7227 0.00 1.87 2.58 − 8.36 − 3.27 − 7.01 − 4.08 0.00 0.00
In-plane transition 0.6535 3.23 0.00 0.00 − 9.32 − 3.33 − 6.18 0.00 0.00 0.42
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FIG. 1. (Color online) Change in energy of a vacancy as a
function of strain for different types of strain. Symbols are data
obtained from molecular statics, and lines are predictions made using
the dipole tensor and Eq. (1). The different strains are ε11 (•), ε33 (�),
ε23 (�). ε22 is not shown, as its results are identical to those of ε11.
ε12 and ε13 are not shown, as their results are identical to those of ε23.

values of the vacancy and its transitions are given in Table
I. There are in fact two symmetrically equivalent vacancies,
depending on whether the vacant site belongs to the A or
B layer of the hexagonal close packed (HCP) lattice, and a
total of 12 possible transitions each vacancy type can undergo.
The full kMC catalog is obtained by performing symmetry
operations on the vacancy and its basic transitions. These

symmetry operations and the additional complexity posed by
the split vacancy (viz. the asymmetry of the two saddle points
associated with the in-plane hop) are outlined in Appendix B.

The dipole tensor values were validated by comparing the
energetics obtained from Eq. (1) with explicit atomistic cal-
culations of the vacancy in various strain fields. In particular,
a vacancy configuration was subjected to a far field strain,
minimized, and the energy compared with a configuration with
zero strain. For the saddle, each image from the chain of states
of the NEB calculation was subjected to a far field strain, the
saddle reconverged, the new saddle point energy measured, and
the new energy barrier computed. Results of the comparison
are shown in Fig. 1 for the minimum, and Fig. 2 for both
transitions. The range of strain used was εij ∈ [−0.02 : 0.02].

The agreement between the measured energy values and
the dipole tensor predictions are in good agreement for small
strains (about 1%), for all the different strain components. For
larger strains, however, deviations from the predicted values
are observed. Most notable of these is the energy barrier for
an out-of-plane hop [open circles in Fig. 2(b)], which deviates
by about 0.02 eV for a 2% tensile strain along the x direction.
This deviation, while larger than the others, is still less than 3%
from the predicted value. For a compressive strain in the same
direction, the deviation is smaller. These results show that for
single strain components, changes to the energy barriers can
be computed accurately using the dipole tensor relationship in
equation (1). In the next subsection, the effect of more complex
strain fields is examined.

B. Vacancy energetics in the vicinity of an edge dislocation

Following Hayward et al.,41 who performed a similar
treatment for BCC iron, a comparison between the energetics
of a vacancy in the vicinity of an edge dislocation as predicted
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FIG. 2. (Color online) Energy barriers as a function of strain. Symbols are data obtained from the CI-NEB, while lines are predictions made
using the dipole tensor for (a) in-plane vacancy hop (filled symbols), and (b) out-of-plane vacancy hop (open symbols). The different strains
are ε11 (•), ε22 (�), ε33 (�), ε23 (�), ε13 (�), ε12 (�).
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using the dipole tensor and directly measured from atomistics
was made. The choice of edge dislocation was made for
two reasons: (a) there exists an analytical expression for the
strain field, and (b) the strain field itself is complex enough
to simultaneously test multiple components of the dipole
tensor. Due to the strain field induced by the presence of the
edge dislocation, the formation energy of the point defect is
modified by an amount �E, and can be computed either (a)
directly from atomistics, or (b) from Eq. (1). In this subsection,
we describe the steps taken to compute �E.

For an edge dislocation in an HCP crystal with Burgers
vector b = bx + by , the displacement field is given within
the purview of anisotropic elasticity,42 and the strain fields
are obtained by computing the appropriate derivatives of
the displacement field. Note that the expressions for the
displacement field are valid only if either (a) the dislocation
line is an axis of sixfold symmetry or (b) every axis is an
axis of evenfold symmetry. A dislocation with Burgers vector
b = 1

3 [21̄1̄0] on the (011̄0) slip plane was chosen, as it satisfies
the first condition, i.e., the z axis is one of sixfold symmetry. It
is possible to construct a dislocation with the same Burgers
vector on the (0001) slip plane, but we observed that on
the (0001) slip plane, the edge dislocation dissociates into
Shockley partials with mixed character.

The atomistic model of the edge dislocation was created
using a Volterra construction as follows: the starting point
was a perfect crystal in the shape of a cylinder of radius
≈100 Å and height ≈20 Å. The cylinder was centered at
the origin of the simulation box, with its axis along the z

direction. The box itself was periodic in the z direction, and
large enough to accommodate the cylinder along the x and y

directions. All atoms of this cylinder were displaced according
to the displacement field computed using anisotropic elasticity
theory. The “skin” atoms (atoms within twice the cutoff
distance of the EAM potential from the periphery of the
cylinder) were frozen, while the interior atoms were allowed
to relax. The top view of the relaxed structure, with the skin
atoms colored red, is shown in Fig. 3. Here, the dislocation is

FIG. 3. (Color online) Volterra construction used to create an edge
dislocation. The dislocation is at the center of the cell, with its line
direction ξ along the [0001] direction. The simulation cell is periodic
along ξ . In the close up of the dislocation core, the topmost layer of
atoms are colored blue.
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FIG. 4. (Color online) Change in vacancy energy, �E, as a
function of position in the vicinity of the edge dislocation created
using a Volterra construction (shown in Fig. 3). As per convention,
θ increases in the counterclockwise direction in the xy plane. Points
are data obtained from atomistics, while lines are obtained using the
double dot product of the dipole tensor G and the strain tensor ε

(obtained using anisotropic elasticity theory). Predicted values begin
to deviate from atomistic values at r < 20 Å.

located at the origin, which is the center of the cell, and the
dislocation line ξ is perpendicular to the plane of viewing. The
value of �E for the vacancy was computed at various spatial
locations by deleting a single atom, relaxing the structure,
and computing the relative vacancy formation energy, using a
vacancy in a strain free environment as the reference.

Figure 4 shows a plot of �E computed using both
atomistics, and Eq. (1) using the strain tensor obtained from
elasticity theory, as a function of distance from the dislocation
core, for a few selected angles (as per convention, the angle θ

increases in the counterclockwise direction in the xy plane).
Results are in good agreement, except near the core, as
expected. This is due to the breakdown of elasticity theory,
which is known to be invalid near the core of a dislocation,
and not a limitation of the dipole tensor approach. Since the
strain gradients are large near the core, it could be an issue for
the dipole tensor approach. It is expected that with a properly
computed strain field (using methods such as Falk and Langer’s
method43 of using a least-squares fit to the displacement to
compute the deformation gradient, the Voronoi polyhedra
approach of Mott et al.,44 or the least-squares method used by
Shenogin and Ozisik45,46), the agreement of atomistics with
the predicted values will be better.

C. Vacancy dynamics

The dynamics of a vacancy were validated by computing its
diffusivity, using both MD and kMC, in strained and unstrained
environments. Diffusivity along each coordinate direction was
computed using a least-squares fit to the linear portion of the
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FIG. 5. (Color online) Diffusivity of a single vacancy shown on
an Arrhenius plot for ε0 = 0 (strain free), and ε0 = 0.04 (εxx =
0.04,εyy = −0.04). In the absence of strain, diffusion in the basal
plane is isotropic, and thus, Dy for this case is not shown. Points are
results from MD, and lines are results from kMC.

mean square distance as a function of time47 as〈
R2

i

〉 = 2Dit ; i ∈ [x,y,z], (7)

where the average was computed over more than 3500
independent trajectories. The strain tensor imposed was of
the form

ε =

⎛
⎜⎝

ε0 0 0

0 −ε0 0

0 0 0

⎞
⎟⎠; ε0 � 0 (8)

corresponding to tensile strain along the x direction, and
compressive along the y direction. Since the dipole tensor
components presented in Table I are relatively small, it was
found necessary to use values of the parameter ε0 � 0.02 to
observe measurable effects. Figure 5 shows the diffusivity as a
function of the parameter ε0. The MD results agree well with
the kMC results, until anharmonicity effects start to become
important (seen in the MD data at the highest temperatures).
For the unstrained case, diffusion is isotropic in the basal plane,
i.e., Dx = Dy as expected, but there is anisotropy between the
x and z directions because of the symmetry of HCP materials.
For the strained case, the asymmetric strain in the x and y

directions breaks the symmetry of the basal plane, resulting
in fully anisotropic diffusivity with Dx �= Dy �= Dz. Also,
compared with the unstrained state, diffusivity in all three
directions is enhanced. This is because compressive strain in
the y direction increases the rate of transitions that have x and z

components as part of their displacement vector. These results
show that the kMC catalog is complete, the dipole tensor
approach predicts the change in energy barriers accurately,
and that Gillan’s strain derivative relationship for computing
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FIG. 6. (Color online) Spontaneous transformation of a SIA
under strain: results of straining a basal octahedral (BO) SIA structure.
Points are data obtained using atomistics. At ε ≈ 0.008, the BO
structure spontaneously transforms into a basal crowdion (BC).
Straight blue lines are predictions to �E using the dipole tensor of
the respective structure. Insets show a view of both structures looking
down the c axis. Arrows on the atoms in the BO structure (upper left)
show the displacement of atoms in going to BC. The broken inclined
red line shows the energy barrier for the transformation, as predicted
using the dipole tensor, and the horizontal broken line marks Ea = 0.

the dipole tensor are valid for both the minimum and the saddle
point of a transition.

D. Limitations

While results presented in the preceding sections demon-
strate that the dipole tensor approach is capable of accurately
accounting for arbitrary strain fields, it is important to discuss
some of the limitations of this approach. The main assumption
of this approach is that the elastic response of the environment
of the defect is well approximated by that of perfect bulk.
In its present form, this technique should not be applied to
defects at or near free surfaces or interfaces. However, if an
appropriate surrogate for the bulk behavior is identified, the
concepts discussed here can be directly translated.

Another important assumption is that the fundamental
structure of the kMC catalog is unchanged by the introduction
of strain. This is a result of assuming that the underlying
topology of the potential energy surface is independent of
strain: while strain might change the energy of minima, the
connectivity graph between them is unchanged, and the strain
serves only to change the relative heights of stationary points
on the surface.

Preliminary results obtained for self-interstitial atoms
(SIAs), presented in Fig. 6, demonstrate a scenario that violates
our assumptions: as a crystal with a single SIA is strained,
at εxx ≈ 0.008, the saddle between the basal octahedral (BO)
structure of a SIA, and the basal crowdion (BC) structure
disappears, and the BO structure spontaneously transforms
into a BC. Note that this result is a function of the potential,
and what happens in real zirconium might be different, a
possibility that can be explored using density functional
theory. Nevertheless, this example illustrates one of the
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FIG. 7. A possible scenario that violates the fundamental as-
sumption used in the dipole tensor approach. As strain increases,
the original energy landscape (bottom curve) changes and acquires a
new minimum C, and corresponding transitions that were nonexistent
in the unstrained case into the rate catalog.

hazards of using the dipole tensor approach to inform a kMC
catalog, and thus while running a simulation, it is important
to periodically check if the topology of the potential energy
surface has been modified. The dipole tensor approach itself
provides a cheap on-the-fly check to identify some scenarios:
in Fig. 6, the red broken line is the barrier for transformation
as a function of strain, as predicted by the dipole tensor.
The horizontal black broken line indicates Ea = 0. For the
BO → BC transformation, the energy barrier computed using
the dipole tensor approach becomes negative at εxx ≈ 0.005,
suggesting that the rate catalog is no longer physical.

The reverse scenario is also possible: states that were not
energy minima in the absence of strain turn into energy minima
when a strain is applied. This latter scenario is illustrated
schematically in Fig. 7, and poses a more serious problem:
computation of a zero strain kMC catalog would not reveal the
existence of a hitherto unknown minimum which could change
the connectivity of the catalog, and possibly have profound
implications for the dynamics. In such a situation, it might be
useful to choose the strained state as the reference from which
dipole tensors are computed.

Note that some of these limitations can be partially ad-
dressed by computing dipole tensors around multiple reference
strain states. However, even in its simple form, the dipole
tensor approach allows for incorporation of the effects of strain
that affect defect mobility, and will yield much more physical
and accurate results than if the strain effects are not accounted
for. This is illustrated in the next section.

IV. APPLICATIONS

Some rate theory calculations done in the past assume
for simplicity (see, e.g., work by Stoller et al.48 or Rottler

et al.49) that the point defect absorption rate of sinks, such as
dislocations, is spatially homogeneous, with the spatial het-
erogeneity being subsumed into model parameters. Using the
methodology outlined and validated above, it is now possible
to compute more accurate values of point defect absorption
rates by sinks without resorting to parameters. Furthermore, it
is also possible to accurately compute the partitioning of point
defect fluxes into different sinks which have different and
potentially interacting strain fields as a function of the spatial
distribution of sinks. In this section, a few demonstrations of
the capability outlined above are presented.

A. Strain-induced vacancy migration inhomogeneity

The edge dislocation described in the previous sections
was used as the test sink, and the mobility of a vacancy
in its field was examined. At various points in the vicinity
of the edge dislocation, the rates of each possible transi-
tion, k(i), were computed at 500 K, and the rate-weighted
average displacement vector, w, was computed at each
point as

w =
∑

i k
(i)dr(i)∑
i k

(i)
, (9)

where the summation is over all possible transitions for a
vacancy (six in-plane and six out-of-plane), over two types
of vacancies (A plane and B plane) for a total of 24 possible
transitions. The vector w is thus an indicator of the vacancy
flux in the vicinity of the edge dislocation. A value of |w| = 0
indicates that the vacancy executes a hop in a random direction
at that position: all directions are equally probable. A nonzero
value, on the other hand, indicates that the vacancy is on
average predisposed towards executing a step in the direction
of w, and the magnitude of the bias is proportional to the
magnitude of w. The results of this computation are shown
as a vector plot in Fig. 8, which is a two-dimensional slice
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FIG. 8. (Color online) The vector w, computed as the rate-
weighted average displacement, as a function of position, in the
vicinity of an edge dislocation. Only a two-dimensional slice at z = 0
is shown. The vector w shows the most likely direction of motion of
the vacancy. Also shown are 2D projections of a few representative
trajectories of the vacancy with their starting points marked by solid
circles.
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at z = 0. The bias in vacancy mobility introduced by the
dislocation is clearly visible. In the lower half of the figure, the
repulsive side of the edge dislocation shows flux lines pointing
away from the dislocation, while the opposite attractive side
shows flux lines pointing towards the dislocation. The flux
lines also circle from the repulsive side to the attractive
side, indicating that a vacancy placed on the repulsive side
has a tendency to make its way over to the attractive side
before being absorbed: a characteristic of the flux lines
predicted from continuum elasticity theories. Far away from
the dislocation, the vacancy sees little or no bias in its mobility.
As it approaches the dislocation, the bias becomes more
pronounced.

Superimposed on this plot are two-dimensional projections
of a few sample vacancy trajectories. The starting point of each
trajectory is shown by a solid circle, and the trajectories behave
in accordance with the bias introduced by the dislocation. The
red and blue trajectories begin in initially repulsive regions.
The red trajectory moves to an attractive region before it
gets absorbed into the dislocation. The blue trajectory, on the
other hand, never makes it to the attractive side and escapes.
The green and purple trajectories start in attractive sides of
the dislocation and get absorbed. Note that these trajectories
are just indicators of typical behavior, and depending on the
temperature, some trajectories might behave differently.

B. Vacancy absorption rate at an edge dislocation

In this second test, a vacancy was placed at a given point
(x,y) (grid points in Fig. 9) in the vicinity of the dislocation.
The system was evolved using the kMC algorithm described in
Sec. II C in a cubic simulation box of side 1 × 105 Å at 500 K
(typical cladding temperature for an operational reactor). If
the vacancy reached the interior of a cylinder of radius 3 Å
surrounding the dislocation, it was considered absorbed, a
counter was incremented, and the time taken by the vacancy
to be absorbed was noted. If, on the other hand, the vacancy
reached the edge of the box, it was considered to have escaped.
This process was repeated over 700 times for each point (x,y),
and the probability of absorption (P ), and the mean time to
absorption (t) were computed. The process was repeated at
multiple spatial locations, and the two quantities P and t as
a function of position are shown in Figs. 9(a) and 9(b). The
lowest barrier as a function of position is shown in Fig. 9(c),
indicating the spatial variation of the barrier associated with the
most probable event. In these simulations, the edge dislocation
is located at the origin, with its line direction ξ along the z axis.
We see that the asymmetry is a consequence of the strain field,
that leads to variability in absorption times.

C. Vacancy absorption rate in a periodic array of dislocations

One of the important quantities that is often encountered
in defect reaction rate theories50 is the defect absorption rate
A, which directly controls the macroscopic strain rate of the
material. Traditionally, the defect absorption rate is computed
as

A = Dck2, (10)

where D is the defect diffusivity in a strain free bulk envi-
ronment, c is the defect concentration, and k2 is a parameter
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FIG. 9. (Color online) In the vicinity of the dislocation described
in Sec. III B, (a) probability of absorption by the dislocation, (b) mean
lifetime if absorbed, and (c) lowest barrier for a vacancy hop. The
dislocation is located at the origin, with its line direction ξ along the
z axis. The spatial inhomogeneity due to the strain field is reflected
in all three figures.
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known as sink strength. With the underlying assumption that
the mean distance between sinks is significantly less than the
mean distance between defects,50 the sink strength is computed
using a single defect in a simulation box as follows:51,52 in
a simulation box with periodic boundary conditions, with a
microstructure composed of typically only one class of sink, a
single defect is introduced at a random position, and followed
until it gets absorbed into the sink. Upon absorption, a new
defect is introduced, and the procedure repeated. The sink
strength is then computed as

k2 = 2n

d2
j 〈nj 〉

, (11)

where dj is the average distance per jump, 〈nj 〉 is the average
number of jumps executed by the defect before it is absorbed,
and n is the dimensionality of the diffusivity D used in
Eq. (10).

This approach suffers from two limitations: (a) it uses the
homogeneous bulk diffusivity, which implies a decoupling
between diffusion and elasticity, and consequently, contains
no information about the spatial inhomogeneity introduced
by the sink; and (b) there is no information about the
diffusion anisotropy of the defect, which is important for
materials like zirconium, i.e., this approach assumes that all
hops are equivalent, and thus a simple counting of steps is
appropriate. In this subsection, the quantitative differences
between vacancy absorption rates, computed with and without
a strain field, are highlighted for two different sink densities,
and a range of temperatures.

In a cubic simulation box with periodic boundary conditions
(note that the boundary conditions for this simulation box are
different from those used in Sec. IV A), the edge dislocation
described in previous sections was placed at the origin, with
its line direction ξ parallel to the z direction. In addition
to the strain field of the dislocation in the simulation box,
the strain field of the eight first periodic neighbors was
superimposed to obtain the final strain field. By tracking the
time to absorption of vacancies (a vacancy was considered
absorbed if it reached the interior of a cylinder of radius 3 Å
surrounding the dislocation) placed one by one in the field of
the edge dislocation, as in Sec. IV A, the absorption rate A

was computed as the reciprocal of the spatially averaged mean
time to absorption. This method of computing A removes any
ambiguity associated with choosing a value for the diffusivity
D, which can be a difficult choice, particularly for anisotropic
materials such as zirconium.

Figure 10 shows a plot of the ratio of the quantity
A(ε)/A(ε = 0), which is the ratio of absorption rates computed
in the presence, and absence of dislocation strain fields, for
two different dislocation densities of ρ = 1015 m−2, and ρ =
1016 m−2, which correspond to realistic dislocation densities of
cold worked material. The results show that as the temperature
approaches zero, the ratio increases, and we expect it to
plateau as T → 0. This is because at lower temperatures, the
strain-induced bias in vacancy mobility is more pronounced,
and vacancies have a more direct path to the dislocation. If a
vacancy starts on the repulsive side of a dislocation, it migrates
until it crosses the periodic boundary, makes it to the attractive
side of the dislocation, and gets absorbed in a relatively
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FIG. 10. (Color online) Ratio of absorption rates A computed
with and without the effect of strain fields for dislocation densities
representative of cold worked material. Strain effects become less
important at higher temperatures, and lower dislocation densities.

small number of steps. This results in an enhancement of the
absorption rate. On the other hand, vacancies in the absence of
strain have to perform a random walk, the length of which is
on average unchanging with temperature, in order to reach the
dislocation. At high temperatures, the effects of strain become
less important: the vacancy trajectory is less biased even in
the presence of strain, and the ratio asymptotes to unity. Strain
effects are less pronounced for the lower dislocation density,
as the significantly strained region is a smaller fraction of
the simulation box. This strain-induced enhancement of the
absorption rate is a factor between 2 and 4 for normal reactor
operating temperatures of ≈500 K, and can reach factors in
excess of 30, for temperature and dislocation densities that
might be more relevant for laboratory conditions. It is also
important to note that we do not expect this demonstration to
change qualitatively as the interatomic potential is changed:
any reasonable potential for zirconium is expected to capture
the in-plane and out-of-plane transitions, as well as the energy
changes as a function of strain. Thus, this demonstration might
be considered semi-independent of the potential, and that the
phenomenon of strain-induced absorption rate enhancement is
a universal feature in all materials.

D. Possibilities for future enhancements and applications

In the above examples, only one defect was simulated
in any given realization of the system. Interactions between
point defects have not been taken into account, but can easily
be incorporated into the kMC framework presented above.
Other subjects of interest that can be incorporated with relative
simplicity into the framework include the presence of multiple
types of sinks (such as screw dislocations, loops, voids, and
even a complex tangle of dislocations that may be predicted
from dislocation dynamics simulations), partitioning of point
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defect flux into different sinks, and evolution of the sinks
themselves.

The input strain field required for these complex scenarios
is generally not available in closed form. In such situations, the
strains can be calculated atomistically (using either the least-
squares approach to computing the deformation gradient,43

or the Voronoi polyhedra approach44) and used as input into
the simulation, and the atomistic strain fields can be updated
anytime the defect becomes part of the sink. The strain fields
required in such situations are the strain fields in the absence
of the defects, and it is assumed that the defect is in an
environment that is well approximated by the bulk.

These examples are a small subset of the possible extensions
to the method presented in this work, and will be explored in
detail in future publications.

V. CONCLUSIONS

A method that accounts for the influence of arbitrary
strains on defect transition rates in kinetic Monte Carlo was
outlined. This method uses the dipole tensor to rapidly compute
strain-induced changes in transition rates, and requires the
inexpensive computation of the double dot product of two
tensors, as opposed to recomputing the rate catalog from
scratch, or even reconverging saddles in the presence of strain.

This method can only compute the changes in rates for
predefined events, and while running an actual simulation, it
would be advisable to periodically check to see if any of the
assumptions underlying the method have been violated. The
benefits of using this method far outweigh the limitations,
the latter of which can be guarded against, if not on the
fly, at least after the fact, to improve the quality of the
simulation.

The power of this method is that quantities such as
point defect absorption rates, which naturally depend on sink
distributions, can be more directly calculated, accounting for
all variations in strain fields in the material, with a significant
savings in computational effort. This method allows more
accurate computation of parameters, such as sink strength and
sink efficiency, that are used in traditional radiation damage
models. Accurate computations of point defect absorption
rates are critical for predicting mesoscale phenomena, such
as dislocation climb and loop growth, which determine
microstructural evolution under irradiation. The method itself
can be extended to any system where strain influences mobility.
This approach could also be incorporated into an adaptive kMC
approach, where saddles are computed on-the-fly, and barriers
are updated via the dipole tensor.

For the application of this method to more complex defects,
such as interstitial clusters or voids, computing the rate catalog
of the complex defect is a real and challenging problem as the
number of transitions associated with a complex defect can be
astronomical. As stated in the introduction, the exploration of
the potential energy landscape can be a formidable challenge,
and is an issue for all kMC simulations. One way of dealing
with complex defects, within the framework outlined in this
paper, is to obtain an effective energy barrier from an Arrhenius
plot of diffusivity vs. temperature at various strains, and
compute an effective dipole tensor for the complex defect.
This is more akin to traditional OKMC simulations in which

objects are treated in an average sense, rather than accounting
for every atomic process that describes their motion. This
simplistic approach might not be straightforward to put into
practice because of some interesting features presented by
complex defects that warrant further investigation, such as
(a) crowdion clusters in zirconium are known to be rapid
one-dimensional diffusers,53 and (b) there exist magic sized
islands that exhibit non-Arrhenius behavior.54 Addressing
these interesting features posed by complex defects remains
an open question, and we hope to address these issues in future
publications.
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APPENDIX A: SPLIT VACANCY

Figure 11 shows the energy along the reaction coordinate
for a vacancy hopping from one lattice site to the next
within the basal plane. Here, the reaction coordinate, x/a,
is the distance moved by the vacancy, x, normalized by
the lattice parameter, a. Also shown are snapshots of the
basal plane containing the vacancy, and the intermediate split
vacancy configuration. The barriers for the transformations are
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FIG. 11. (Color online) Energy as a function of reaction coordi-
nate for vacancy migration in the basal plane. The reaction coordinate
is given by the distance moved by the vacancy, x, normalized by the
lattice parameter, a.
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Ea(normal → split) = 0.654 eV, and Ea(split → normal) =
0.010 eV. The only two minima that the split vacancy
was observed to be capable of transforming into were two
normal vacancies, corresponding to x/a = 0 and x/a = 1.
For temperatures in the range T ∈ [300 : 900], the ratio of
Ea(split → normal)/kBT is in the range of [0.39 : 0.13], and
can therefore be ignored.

This claim was substantiated by observing MD trajectories
of a vacancy in the following manner: the starting point was a
minimized configuration of a single vacancy in the normal
vacancy position. The system was thermalized to 973 K,
and the equations of motion were integrated, quenching the
trajectory every 5 fs, and comparing the resulting configuration
with the starting configuration, until the vacancy made its first
hop. If the hop was out of the basal plane, the trajectory
was discarded, and the process was started again with a
different random number seed. If, however, the hop was in the
basal plane to the split vacancy structure, the trajectory was
continued until the second hop was made. If the second hop was
in the direction opposite the first hop, a “backward” counter
was incremented. This counter kept track of how many times a
vacancy hopped back to its original position after transforming
into a split vacancy. If the second hop was in the same direction
as the first hop, a “forward” counter was incremented. After
two hops, the original starting configuration was restored, and
the process was repeated with a different random number seed.
Upon repeating this experiment 137 times, it was found that the
number of times a split vacancy jumped back into its original
position was 3, and the mean lifetime of a split vacancy was
0.3 ps. This implies that the majority (over 97%) of transitions
from a vacancy to a split vacancy continue on, with the net
effect of moving the vacancy by a lattice constant, and thus,
the split vacancy as an explicit minimum can be neglected.

APPENDIX B: THE FULL kMC CATALOG
FOR A VACANCY

The full kMC catalog for a vacancy is obtained by
performing symmetry operations on the minimum, and the
two basic transitions associated with the minimum. The two
basic transitions of a vacancy are (a) the in-plane hop along
the x direction, and (b) the out-of-plane hop with a zero x

component, as outlined in Table I. Each type of transition
has different sets of symmetry operations. For the in-plane
transition, the first two symmetry equivalents are obtained
by performing 120◦ and 240◦ rotations about the z axis. The
resulting set of three transitions are reflected across the yz

plane to obtain the set of six in-plane transitions. For the
out-of-plane transitions, the first two rotational symmetry
operations remain the same, but the reflection is performed
across the xy plane. These symmetry operations can be
characterized by the following transformation matrices: for
the in-plane transition, the matrices are

Rip =

⎡
⎢⎣

p 0 0

0 1 0

0 0 1

⎤
⎥⎦

⎡
⎢⎣

cos(nθ ) − sin(nθ ) 0

sin(nθ ) cos(nθ ) 0

0 0 1

⎤
⎥⎦ (B1)

while the matrices for the out-of-plane transition are

Roop =

⎡
⎢⎣

1 0 0

0 1 0

0 0 p

⎤
⎥⎦

⎡
⎢⎣

cos(nθ ) − sin(nθ ) 0

sin(nθ ) cos(nθ ) 0

0 0 1

⎤
⎥⎦ . (B2)

Here, n is an integer in the range [0,5], θ = 120◦, p = 1 if
n � 2, and p = −1 if n > 2, and we have exploited the fact
that a rotation by θ is equivalent to a rotation by 360◦ + θ .

Furthermore, due to the ABAB stacking sequence of HCP,
the transitions associated with an A plane vacancy are different
from those of a B plane vacancy. Thus, the vacancy state, and
the 12 transitions obtained in the previous step were rotated
about the z axis by 180◦ to obtain a second state with its
own set of 12 transitions. The kMC catalog also contained
the information that an in-plane transition did not change
the character of the vacancy, while an out-of-plane transition
changed a vacancy from A type to B type, and vice versa.

Another complication was posed by the asymmetry of the
in-plane transition. If the split vacancy is ignored as a state,
there are two saddle points that a vacancy has to pass over when
executing a hop. In Fig. 11, one saddle point is at x/a ≈ 0.375,
and the other at x/a ≈ 0.625. These two saddle points are
asymmetric with respect to shear strain, i.e., the application
of a shear strain raises one of these saddles, and lowers the
other. Thus in the kMC simulations, when the saddle point
energies were calculated as a function of strain, both saddles
were accounted for, and the higher of the two saddles was taken
to be the relevant one for the in-plane transition. Note that this
extra step needs to be incorporated into the kMC algorithm,
so that the same saddle point is picked for both the forward
and backward transitions. Furthermore, in the kMC procedure,
the strain at the midpoint of the transition is taken to be the
strain at the saddle point. This was done for simplicity, and in
general, the saddle point of the transition is not necessarily at
the midpoint of the transition.
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33E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspan-

nungen (Springer-Verlag, Berlin, 1958).

34A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline
Solids (Academic Press, New York, 1972).

35G. Leibfried and N. Breuer, Point Defects in Metals, Vol. 1
(Springer-Verlag, Berlin, 1978).

36E. Clouet, S. Garruchet, H. Nguyen, M. Perez, and C. S. Becquart,
Acta Mater. 56, 3450 (2008).

37H. Kanzaki, J. Phys. Chem. Solids 2, 24 (1957).
38J. R. Hardy and A. B. Lidiard, Philos. Mag. 15, 825 (1967).
39M. J. Gillan, Philos. Mag. A 48, 903 (1983).
40M. J. Gillan, J. Phys. C 17, 1473 (1984).
41E. Hayward, C. Deo, B. P. Uberuaga, and C. N. Tomé, Philos. Mag.
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